Table 1. Fractional atomic coordinates and $B_{e q}$ values (\AA^{2})

	$B_{\text {eq }}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.			
	x	y	z	$B_{\text {cq }}$
Sn	0.27553 (2)	$0 \cdot 10188$ (2)	0.19474 (2)	4.07
O(1)	0.3028 (3)	0.2527 (3)	0.0593 (3)	5.01
$\mathrm{O}(2)$	0.2596 (5)	0.4142 (3)	0.1789 (4)	6.26
$\mathrm{O}(3)$	0.2976 (6)	0.5952 (2)	0.0005 (4)	7.29
C(1)	0.2872 (4)	0.3709 (4)	0.0820 (4)	4.36
$\mathrm{C}(2)$	0.3044 (4)	0.4630 (3)	-0.0207 (3)	16
C(3)	0.3109 (6)	0.6547 (4)	-0.1094 (5)	6.80
C(4)	0.3233 (6)	0.5682 (4)	-0.1918 (5)	6.01
C(5)	0.3230 (5)	0.4408 (5)	-0.1333 (4)	5.53
C(6)	0.3255 (8)	-0.0448 (5)	0.0736 (6)	7.46
C(7)	0.4400 (5)	0.1666 (6)	0.3517 (5)	6.27
C(8)	0.0639 (5)	0.1432 (6)	$0 \cdot 1725$ (6)	6.75

Table 2. Interatomic distances (\AA) and bond angles (${ }^{\circ}$) Primed atoms are related by $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

$\mathrm{Sn}-\mathrm{O}(1)$	2.191 (3)	$\mathrm{Sn}-\mathrm{C}(6)$	$2 \cdot 138$ (5)
$\mathrm{Sn}-\mathrm{C}(7)$	$2 \cdot 129$ (5)	$\mathrm{Sn}-\mathrm{C}(8)$	2.130 (5)
$\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)$	2.430 (4)	$\mathrm{Sn}-\mathrm{O}(2)$	3.175 (4)
$\mathrm{Sn}-\mathrm{O}(3)$	3.584 (4)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.244 (5)
$\mathrm{C}(1)-\mathrm{O}(2)$	1.240 (5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.502 (5)
$\mathrm{C}(2)-\mathrm{O}(3)$	$1 \cdot 365$ (4)	$\mathrm{C}(2)-\mathrm{C}(5)$	1.306 (5)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.377 (6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.283 (7)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.440 (6)		
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(6)$	88.7 (2)	$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(7)$	$96 \cdot 1$ (2)
$\mathrm{O}(1)-\mathrm{Cn}-\mathrm{C}(8)$	$95 \cdot 5$ (2)	$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)$	172.4 (2)
$\mathrm{C}(6)-\mathrm{Sn}-\mathrm{C}(7)$	116.2 (3)	$\mathrm{C}(6)-\mathrm{Sn}-\mathrm{C}(8)$	118.0 (3)
$\mathrm{C}(6)-\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)$	$84 \cdot 2$ (2)	$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{C}(8)$	124.6 (2)
$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)$	89.7 (2)	$\mathrm{C}(8)-\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)$	85.3 (2)
$\mathrm{Sn}-\mathrm{O}(1)-\mathrm{C}(1)$	119.6 (2)	$\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	149.9 (3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	125.5 (4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	114.0 (3)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$120 \cdot 6$ (4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	117.6 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	131.5 (4)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	$110 \cdot 8$ (4)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(3)$	$105 \cdot 2$ (3)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$110 \cdot 8$ (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107 \cdot 1$ (4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(2)$	106.0 (4)

Fig. 1. Molecular structure and numbering scheme for $\left[\mathrm{Me}_{3} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CC}_{4} \mathrm{H}_{3} \mathrm{O}\right)\right]_{n}$ (Johnson, 1971).

Acta Cryst. (1989). C45, 1811-1813

Structure of trans-Dichlorotetrakis(diphenylphosphine)ruthenium(II) Chloroform (1/2)

By Ewan B. McAslan, Alexander J. Blake* and T. Anthony Stephenson
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 20 March 1989; accepted 2 June 1989)

Abstract

RuCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{P}\right)_{4}\right] .2 \mathrm{CHCl}_{3}, \quad M_{r}=1155 \cdot 7\), triclinic, $\quad P \overline{1}, \quad a=10.4314(11), \quad b=10.5379$ (28), $c=13.2413$ (8) $\AA, \alpha=70.106$ (13), $\beta=73.208$ (7), γ $=77.191(13)^{\circ}, \quad V=1298.0 \AA^{3}, \quad Z=1, \quad D_{x}=$ $1.460 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $0.865 \mathrm{~mm}^{-1}, \quad F(000)=586, T=298 \mathrm{~K}, R=0.0311$ for 3154 unique observed reflections. The Ru occupies a crystallographic inversion centre and is

[^0]0108-2701/89/111811-03803.00
octahedrally coordinated by the resulting trans arrangement of the ligands.

Experimental. Compound prepared by isomerization of the corresponding cis complex in chloroform solution on standing in air, crystals obtained by partial evaporation of this solution. Pale-yellow ingot, $0.6 \times$ $0.4 \times 0.3 \mathrm{~mm}, \quad$ CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation, cell parameters by least-squares refinement on diffractometer angles © 1989 International Union of Crystallography

Table 1. Atomic coordinates with e.s.d.'s and isotropic thermal parameters

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}\left(\AA^{2}\right)$
Ru	$0 \cdot 0000$	0.0000	0.0000	0.02918 (24)
$\mathrm{P}(1)$	-0.13685 (7)	0.20997 (7)	-0.00095 (7)	0.0349 (5)
H(31)	-0.070 (3)	0.314 (3)	-0.062 (3)	0.0800
$\mathrm{P}(2)$	-0.01471 (8)	0.03077 (8)	-0.18207 (6)	0.0357 (5)
H(41)	$0 \cdot 1078$ (23)	0.018 (4)	-0.248 (3)	0.0800
$\mathrm{Cl}(1)$	$0 \cdot 18880$ (7)	$0 \cdot 12867$ (8)	-0.09829 (6)	0.0430 (5)
C(1)	-0.1279 (3)	0.36237 (23)	$0 \cdot 13247$ (23)	0.077 (3)
C(2)	-0.1701 (3)	$0 \cdot 40346$ (23)	0.22794 (23)	$0 \cdot 110$ (5)
C(3)	-0.2756 (3)	$0 \cdot 34772$ (23)	$0 \cdot 31299$ (23)	$0 \cdot 1223$ (5)
C(4)	-0.3391 (3)	$0 \cdot 25088$ (23)	$0 \cdot 30257$ (23)	0.093 (4)
C(5)	-0.2969 (3)	$0 \cdot 20979$ (23)	$0 \cdot 20709$ (23)	0.063 (3)
C(6)	-0.1913 (3)	$0 \cdot 26554$ (23)	$0 \cdot 12204$ (23)	0.0471 (22)
C(7)	-0.33772 (23)	$0 \cdot 39820$ (18)	-0.09041 (21)	0.070 (3)
C(8)	-0.45835 (23)	0.43862 (18)	-0.12548 (21)	0.090 (4)
C(9)	-0.53340 (23)	$0 \cdot 34086$ (18)	-0.11944 (21)	0.079 (3)
C(10)	-0.48781 (23)	$0 \cdot 20267$ (18)	-0.07833 (21)	0.074 (3)
C(11)	-0.36718 (23)	$0 \cdot 16225$ (18)	-0.04326 (21)	0.0553 (25)
C(12)	-0.29213 (23)	$0 \cdot 26002$ (18)	-0.04930 (21)	0.0412 (21)
C(13)	-0.20119 (22)	-0.14118 (24)	-0.15371 (15)	0.058 (3)
C(14)	-0.26011 (22)	-0.22012 (24)	-0.18903 (15)	0.073 (3)
C(15)	-0.20661 (22)	-0.23769 (24)	-0.29363 (15)	0.082 (4)
C(16)	-0.09418 (22)	-0.17632 (24)	-0.36291 (15)	0.078 (3)
C(17)	-0.03526 (22)	-0.09738 (24)	-0.32759 (15)	0.063 (3)
C(18)	-0.08876 (22)	-0.07981 (24)	-0.22299 (15)	0.0454 (22)
C(19)	-0.18940 (19)	$0 \cdot 22025$ (18)	-0.30712 (18)	0.0511 (23)
C(20)	-0.23448 (19)	$0 \cdot 34983$ (18)	-0.36995 (18)	0.063 (3)
C(21)	-0.16407 (19)	0.45836 (18)	-0.39304 (18)	0.063 (3)
C(22)	-0.04857 (19)	0.43732 (18)	-0.35329 (18)	0.056 (3)
C(23)	-0.00349 (19)	$0 \cdot 30774$ (18)	-0.29047 (18)	0.0455 (22)
C(24)	-0.07391 (19)	$0 \cdot 19920$ (18)	-0.26738 (18)	0.0372 (19)
$\mathrm{Cl}(2)$	-0.67819 (12)	$0 \cdot 13620$ (13)	-0.45444 (10)	0.0891 (9)
$\mathrm{Cl}(3)$	-0.45929 (12)	0.07484 (13)	-0.34803 (13)	0.1043 (11)
$\mathrm{Cl}(4)$	-0.59500 (14)	0.34822 (12)	-0.40950 (14)	0.1123 (12)
C(25)	-0.6129 (4)	0.1764 (4)	-0.3637 (3)	0.062 (3)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s

$\mathrm{Ru}-\mathrm{P}(1)$	$2 \cdot 3505$ (8)	$\mathrm{P}(1)-\mathrm{C}(12)$	1.8172 (25)
$\mathrm{Ru}-\mathrm{P}(2)$	$2 \cdot 3665$ (8)	$\mathrm{P}(2)-\mathrm{C}(18)$	1.8217 (24)
$\mathrm{Ru}-\mathrm{Cl}(1)$	2.4317 (8)	$\mathrm{P}(2)-\mathrm{C}(24)$	1.8331 (23)
$\mathrm{P}(1)-\mathrm{C}(6)$	1.812 (3)		
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	$90 \cdot 34$ (3)	$\mathrm{H}(41)-\mathrm{P}(2)-\mathrm{C}(18)$	97.1 (15)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{Cl}(1)$	$87 \cdot 13$ (3)	$\mathrm{H}(41)-\mathrm{P}(2)-\mathrm{C}(24)$	$96 \cdot 2$ (15)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{Cl}(1)$	82.00 (3)	$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{C}(24)$	101.30 (11)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{H}(31)$	111.8 (14)	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	120.55 (21)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(6)$	120.73 (10)	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	119.45 (21)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(12)$	122.76 (8)	$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(7)$	119.18 (18)
$\mathrm{H}(31)-\mathrm{P}(1)-\mathrm{C}(6)$	95.2 (14)	$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$120 \cdot 80$ (18)
$\mathrm{H}(31)-\mathrm{P}(1)-\mathrm{C}(12)$) $101.3(14)$	$\mathrm{P}(2)-\mathrm{C}(18)-\mathrm{C}(13)$	121.04 (17)
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	$100 \cdot 18$ (12)	$\mathrm{P}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	118.89 (17)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{H}(41)$	$110 \cdot 8$ (15)	$\mathrm{P}(2)-\mathrm{C}(24)-\mathrm{C}(19)$	$120 \cdot 86$ (16)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(18)$	125.27 (8)	$\mathrm{P}(2)-\mathrm{C}(24)-\mathrm{C}(23)$	$119 \cdot 13$ (16)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(24)$	$120 \cdot 29$ (8)		

for 25 centred reflections with $28<2 \theta<30^{\circ}$. For data collection, ω - 2θ scans with ω-scan width (0.80 $+0.35 \tan \theta)^{\circ}, 2 \theta_{\text {max }}=45^{\circ}, h-10 \rightarrow 11, k-10 \rightarrow 11$, $l 0 \rightarrow 14$, isotropic decay ($\mathrm{ca} 40 \%$) corrected for during processing, no absorption correction, 3386 unique reflections, giving 3154 with $F>2 \sigma(F)$ for structure solution (from a Patterson synthesis followed by iterative cycles of least-squares
refinement and difference Fourier synthesis) and refinement [using full-matrix least squares on F (Sheldrick, 1976)]. Anisotropic thermal parameters for all non-H atoms, H atoms in fixed, calculated positions except for those directly bound to $\mathrm{P}(1)$ and $P(2)$ where the bonds were constrained to be 1.33 (2) \AA. The phenyl rings were refined as planar, idealized hexagons, $d(\mathrm{C}-\mathrm{C})=1.395 \AA$. At final convergence, $R=0.0311, w R=0.0448, S=2.259$ for 244 parameters, $(\Delta / \sigma)_{\text {max }}$ in final cycle 0.021 , max. peak and min. trough in final ΔF synthesis 0.31 and $-0.39 \mathrm{e} \AA^{-3}$ respectively. The weighting scheme w^{-1} $=\sigma^{2}(F)+0.000179 F^{2}$ gave satisfactory agreement analyses. Scattering factors were inlaid (Sheldrick, 1976) except for those for Ru (Cromer \& Mann, 1968). Atomic coordinates are given in Table 1, while selected bond lengths and angles appear in Table 2.* The atom-numbering scheme for the molecule is shown in Fig. 1, which was generated using ORTEP (Mallinson \& Muir, 1985). Molecular geometry calculations were performed using CALC (Gould \& Taylor, 1985).

Related literature. The $\mathrm{Ru}-\mathrm{P} \quad[2.3508$ (8), $2 \cdot 3665(8) \AA]$ and $\mathrm{Ru}-\mathrm{Cl}[2.4317$ (8) \AA] distances in the title compound are similar to those found in the corresponding trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{Me}_{2} \mathrm{PH}\right)_{4}\right]$ (Cotton. Frenz \& Hunter, 1976).

[^1]

Fig. 1. A general view of the molecule showing atom-numbering scheme: thermal ellipsoids are drawn at the 30% probability level, excepting those of H which have artificial radii of $0 \cdot 10 \AA$ for clarity. The Ru occupies a crystallographic inversion centre.

We thank the SERC for support (to EBMcA) and Dr R. J. Nelmes for the use of data-collection facilities.

References
Cotton, F. A., Frenz, B. A. \& Hunter, D. L. (1976). Inorg. Chim. Acta, 16, 203-207.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gould, R. O. \& Taylor, P. (1985). CALC. Program for molecular geometry calculations, Fortran77 version. Univ. of Edinburgh, Scotland.
Mallinson, P. D. \& Muir, K. W. (1985). ORTEPII, interactive version, J. Appl. Cryst. 18, 51-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Two Crystal Modifications of Hexamethylcyclotristannatellurane

By Raymond J. Batchelor, Frederick W. B. Einstein and Colin H. W. Jones
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 27 April 1989; accepted 20 June 1989)

Abstract

CH}_{3}\right)_{2} \mathrm{SnTe}_{3}, \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{Sn}_{3} \mathrm{Te}_{3}, \quad M_{r}=829 \cdot 1\right.\), Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \quad T=293 \mathrm{~K}$: (1) monoclinic, $P 2_{1} / c, a=14.681$ (2), $b=10.2775$ (8), c $=13.561(3) \AA, \beta=112.087(12)^{\circ}, V=1896 \cdot 0 \AA^{3}, Z$ $=4, D_{x}=2.905 \mathrm{Mg} \mathrm{m}^{-3}, \mu=8.45 \mathrm{~mm}^{-1}, F(000)=$ 1439.9, $R=0.034$ for 1968 observed data; (2) tetragonal, $I 4_{1} / a, \quad a=12.710$ (3),$\quad c=22.757$ (4) \AA, $V=3676 \cdot 3 \AA^{3}, \quad Z=8, \quad D_{x}=2.996 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $8.72 \mathrm{~mm}^{-1}, \quad F(000)=2879.8, \quad R=0.024$ for 1507 observed data. In each form the molecule adopts a twist-boat conformation which, in the case of the tetragonal modification, displays crystallographic twofold symmetry.

Experimental. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnTe}\right]_{3}$ was obtained in petroleum solution by Soxhlet extraction of the crude reaction product (Blecher \& Dräger, 1979; Gay, Jones \& Sharma, 1989). Evaporation of the solvent at room temperature yielded a sample consisting mainly of thin yellow-green sheets and a few thicker plates of amber colour. The solid state ${ }^{119} \mathrm{Sn}$ and ${ }^{125}$ Te NMR spectra (Gay et al., 1989) displayed multiple resonances suggesting that more than one crystalline form was present. A plate selected from this sample for X-ray analysis was found to have crystallized in the space group $P 2_{1} / c$. A different yellow crystal modification was formed exclusively when a saturated petroleum solution of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnTe}\right]_{3}$ was cooled to 255 K , as confirmed by its solid state ${ }^{119} \mathrm{Sn}$ and ${ }^{125} \mathrm{Te}$ NMR spectra (Gay et al., 1989). X-ray analysis showed these crystals to be tetragonal, space group $I 4_{1} / a$. Attempts to convert this phase to the monoclinic form by heating were unsuccessful. At 343 K the solid material appeared to fuse to give an apparently polymeric material of negligible solubility in petroleum ether. In either case

0108-2701/89/111813-03\$03.00
the crystals became black upon exposure to air for several mintues.
Crystals were mounted on Pyrex filaments with five-minute epoxy resin and were protected from air exposure by a thin coating of resin. Cell-parameter determination (25 reflections $15 \cdot 1 \leq \theta \leq 19 \cdot 1^{\circ}, P 2_{1} / c$; 24 reflections $\left.20 \cdot 3 \leq \theta \leq 25 \cdot 7^{\circ}, I 4_{1} / a\right)$ and data acquisition were performed using an Enraf-Nonius CAD-4F diffractometer with Mo $K \alpha$ radiation and a graphite monochromator. The symmetry of the intensity-weighted reciprocal lattices and the systematic absences were determined using the diffractometer. Two standard intensities were measured every hour of acquisition time and showed no systematic variations.

An empirical absorption correction (North, Phillips \& Mathews, 1968) was applied to the data in the case of the $I 4_{1} / a$ modification because the irregular shape of the crystal made measurement of crystal faces impracticable. The correction factors applied to the intensities ranged from $1 \cdot 0$ to 0.813 . In the $P 2_{1} / c$ case, an analytical absorption correction (de Meulenaer \& Tompa, 1965) was made (transmission coefficients ranging from 0.614 to $0 \cdot 248$). Data reduction, including Lorentz and polarization corrections, was performed.
In both cases the coordinates for the Te and Sn atoms were determined by direct methods (Main, Woolfson \& Germain, 1971). The C-atom positions were revealed by electron density difference Fourier syntheses. H atoms were fixed at calculated positions with assigned isotropic temperature factors, basing the rotational conformation of each CH_{3} group upon the positions of the strongest peaks near the C atoms from a difference Fourier map. The final, full-matrix least-squares refinement, minimizing
© 1989 International Union of Crystallography

[^0]: * Author for correspondence.

[^1]: * Lists of structure factors, anisotropic thermal parameters, torsion angles and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51971 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

